Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.348
Filtrar
1.
J Plant Physiol ; 296: 154243, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593590

RESUMO

Disentangling the factors that foster the tolerance to water stress in plants could provide great benefits to crop productions. In a two-year experiment, two new PIWI (fungus resistant) grapevine varieties, namely Merlot Kanthus and Sauvignon Kretos (Vitis hybrids), grown in the field, were subjected to two different water regimes: weekly irrigated (IR) or not irrigated (NIR) for two months during the summer. The two varieties exhibited large differences in terms of performance under water-limiting conditions. In particular, Merlot Kanthus strongly decreased stem water potential (Ψs) under water shortage and Sauvignon Kretos maintained higher Ψs values accompanied by generally high stomatal conductance and net carbon assimilation, regardless of the treatment. We hypothesized differences in the hormonal profile that mediate most of the plant responses to stresses or in the regulation of the aquaporins that control the water transport in the leaves. In general, substantial differences were found in the abundance of different hormonal classes, with Merlot Kanthus reporting higher concentrations of cytokinins while Sauvignon Kretos higher concentrations of auxins, jasmonate and salicylic acid. Interestingly, under water stress conditions ABA modulation appeared similar between the two cultivars, while other hormones were differently modulated between the two varieties. Regarding the expression of aquaporin encoding genes, Merlot Kanthus showed a significant downregulation of VvPIP2;1 and VvTIP2;1 in leaves exposed to water stress. Both genes have probably a role in influencing leaf conductance, and VvTIP2;1 has been correlated with stomatal conductance values. This evidence suggests that the two PIWI varieties are characterized by different behaviour in response to drought. Furthermore, the findings of the study may be generalized, suggesting the involvement of a complex hormonal cross-talk and aquaporins in effectively influencing plant performance under water shortage.


Assuntos
Aquaporinas , Vitis , Desidratação/metabolismo , Resistência à Seca , Folhas de Planta/metabolismo , Secas , Aquaporinas/metabolismo , Vitis/fisiologia
2.
Biomolecules ; 14(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540672

RESUMO

As temperatures continue to modify due to weather changes, more regions are being exposed to extreme heat and cold. Physiological distress due to low and high temperatures can affect the heart, blood vessels, liver, and especially, the kidneys. Dehydration causes impaired cell function and heat itself triggers cellular stress. The decline in circulating plasma volume by sweat, which stresses the renal and cardiovascular systems, has been related to some molecules that are crucial players in preventing or provoking cellular damage. Hypovolemia and blood redistribution to cutaneous blood vessels reduce perfusion to the kidney triggering the activation of the renin-angiotensin-aldosterone system. In this review, we expose a deeper understanding of the modulation of molecules that interact with other proteins in humans to provide significant findings in the context of extreme heat and cold environments and renal damage reversal. We focus on the molecular changes exerted by temperature and dehydration in the renal system as both parameters are heavily implicated by weather change (e.g., vasopressin-induced fructose uptake, fructogenesis, and hypertension). We also discuss the compensatory mechanisms activated under extreme temperatures that can exert further kidney injury. To finalize, we place special emphasis on the renal mechanisms of protection against temperature extremes, focusing on two important protein groups: heat shock proteins and sirtuins.


Assuntos
Desidratação , Nefropatias , Humanos , Desidratação/metabolismo , Mudança Climática , Rim/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Temperatura
3.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336456

RESUMO

Defective hydration of airway surface mucosa is associated with lung infection in cystic fibrosis (CF), partly caused by disruption of the epithelial barrier integrity. Although rehydration of the CF airway surface liquid (ASL) alleviates epithelium vulnerability to infection by junctional protein expression, the mechanisms linking ASL to barrier integrity are unknown. We show here the strong degradation of YAP1 and TAZ proteins in well-polarized CF human airway epithelial cells (HAECs), a process that was prevented by ASL rehydration. Conditional silencing of YAP1 in rehydrated CF HAECs indicated that YAP1 expression was necessary for the maintenance of junctional complexes. A higher plasma membrane tension in CF HAECs reduced endocytosis, concurrent with the maintenance of active ß1-integrin ectopically located at the apical membrane. Pharmacological inhibition of ß1-integrin accumulation restored YAP1 expression in CF HAECs. These results indicate that dehydration of the CF ASL affects epithelial plasma membrane tension, resulting in ectopic activation of a ß1-integrin/YAP1 signaling pathway associated with degradation of junctional proteins.


Assuntos
Fibrose Cística , Epitélio , Transdução de Sinais , Humanos , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Desidratação/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Integrina beta1/metabolismo , Mucosa Respiratória/metabolismo
4.
Plant Physiol Biochem ; 207: 108359, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237420

RESUMO

The plant cytoskeletal proteins play a key role that control cytoskeleton dynamics, contributing to crucial biological processes such as cell wall morphogenesis, stomatal conductance and abscisic acid accumulation in repercussion to water-deficit stress or dehydration. Yet, it is still completely unknown which specific biochemical processes and regulatory mechanisms the cytoskeleton uses to drive dehydration tolerance. To better understand the role of cytoskeleton, we developed the dehydration-responsive cytoskeletal proteome map of a resilient rice cultivar. Initially, four-week-old rice plants were exposed to progressive dehydration, and the magnitude of dehydration-induced compensatory physiological responses was monitored in terms of physicochemical indices. The organelle fractionation in conjunction with label-free quantitative proteome analysis led to the identification of 955 dehydration-responsive cytoskeletal proteins (DRCPs). To our knowledge, this is the first report of a stress-responsive plant cytoskeletal proteome, representing the largest inventory of cytoskeleton and cytoskeleton-associated proteins. The DRCPs were apparently involved in a wide array of intra-cellular molecules transportation, organelles positioning, cytoskeleton organization followed by different metabolic processes including amino acid metabolism. These findings presented open a unique view on global regulation of plant cytoskeletal proteome is intimately linked to cellular metabolic rewiring of adaptive responses, and potentially confer dehydration tolerance, especially in rice, and other crop species, in general.


Assuntos
Fenômenos Bioquímicos , Oryza , Desidratação/metabolismo , Proteoma/metabolismo , Oryza/metabolismo , Sobrevivência Celular , Proteínas de Plantas/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/metabolismo , Estresse Fisiológico/fisiologia
5.
Genes Genomics ; 46(1): 13-25, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971618

RESUMO

BACKGROUND: The skin microbiome, a diverse community of microorganisms, plays a crucial role in maintaining skin health. Among these microorganisms, the gram-positive bacterium Micrococcus luteus exhibits potential for promoting skin health. This study focuses on postbiotics derived from M. luteus YM-4, a strain isolated from human skin. OBJECTIVE: Our objective is to explore the beneficial effects of YM-4 culture filtrate on dermatological health, including enhancing barrier function, modulating immune response, and aiding recovery from environmental damage. METHODS: The effects of the YM-4 culture filtrate were tested on human keratinocytes and fibroblasts under various conditions using real-time PCR for gene expression analysis and fibroblast migration assays. A dehydration-simulated model was employed to prepare RNA-Seq samples from HaCaT cells treated with the YM-4 culture filtrate. Differentially expressed genes were identified and functionally classified through k-means clustering, gene ontology terms enrichment analyses, and protein-protein interactions mapping. RESULTS: The YM-4 culture filtrate enhanced the expression of genes involved in skin hydration, hyaluronic acid synthesis, barrier function, and cell proliferation. It also reduced inflammation markers in keratinocytes and fibroblasts under stress conditions. It mitigated UVB-induced collagen degradation while promoted collagen synthesis, suggesting anti-aging properties, and accelerated wound healing processes by promoting cell proliferation and migration. RNA sequencing analysis revealed that the YM-4 culture filtrate could reverse dehydration-induced transcriptional changes towards a state similar to untreated cells. CONCLUSION: M. luteus YM-4 culture filtrate exhibits significant therapeutic potential for dermatological applications.


Assuntos
Desidratação , Epirubicina/análogos & derivados , Micrococcus luteus , Humanos , Desidratação/metabolismo , Pele/metabolismo , Colágeno/metabolismo
6.
J Sci Food Agric ; 104(3): 1591-1598, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37819862

RESUMO

BACKGROUND: During postharvest dehydration, grapes are subject to metabolic changes including ethanol anabolism and catabolism. These changes affect the quality of the final product and ethanol production is a key step. Ethanol dissipation has never been measured during postharvest wine grape dehydration. Thus, the present study aimed to: (i) monitor ethanol dissipation and (ii) investigate chemical-biochemical changes in berries during dehydration. RESULTS: Ethanol dissipation from Raboso grapes, under controlled postharvest dehydration, was found to comprise up to 36% of weight loss (w.l.). Moreover, the activity of enzymes involved in the anaerobic metabolism of grapes was investigated. Ethanol dissipation was highly correlated with grape weight loss (r2 = 0.989). Alcohol dehydrogenase activity, responsible for the reduction of ethanol to acetaldehyde, declined significantly with w.l. Similarly, pyruvate decarboxylase and lactate dehydrogenase reduced their activity. High lipoxygenase activity was measured at 27% w.l., whereas polyphenol oxidation was constant and declined in the last sampling. CONCLUSION: Ethanol dissipation during postharvest dehydration allows for reducing anaerobic metabolism and promotes oxidative metabolism. The sensor used can be a useful commercial tool for monitoring berry metabolism. © 2023 Society of Chemical Industry.


Assuntos
Vitis , Vinho , Vitis/metabolismo , Vinho/análise , Etanol/análise , Desidratação/metabolismo , Redução de Peso , Frutas/química
7.
Nanoscale ; 16(1): 72-84, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38062887

RESUMO

Although cell membranes exist in excess of water under physiological conditions, there are a number of biochemical processes, such as adsorption of biomacromolecules or membrane fusion events, that require partial or even complete transient dehydration of lipid membranes. Even though the dehydration process is crucial for understanding all fusion events, still little is known about the structural adaptation of lipid membranes when their interfacial hydration layer is perturbed. Here, we present the study of the nanoscale structural reorganization of phase-separated, supported lipid bilayers (SLBs) under a wide range of hydration conditions. Model lipid membranes were characterised using a combination of fluorescence microscopy and atomic force microscopy and, crucially, without applying any chemical or physical modifications that have previously been considered essential for maintaining the membrane integrity upon dehydration. We revealed that decreasing the hydration state of the membrane leads to an enhanced mixing of lipids characteristic of the liquid-disordered (Ld) phase with those forming the liquid-ordered (Lo) phase. This is associated with a 2-fold decrease in the hydrophobic mismatch between the Ld and Lo lipid phases and a 3-fold decrease in the line tension for the fully desiccated membrane. Importantly, the observed changes in the hydrophobic mismatch, line tension, and lipid miscibility are fully reversible upon subsequent rehydration of the membrane. These findings provide a deeper insight into the fundamental processes, such as cell-cell fusion, that require partial dehydration at the interface of two membranes.


Assuntos
Biomimética , Desidratação , Humanos , Desidratação/metabolismo , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Fusão de Membrana
8.
PLoS One ; 18(11): e0290752, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37967065

RESUMO

We analyzed the expression of genes coding for Na+ transporters (OsHKT1.5, OsHKT1.1, OsSOS1, OsSOS2, OsNHX1, OsNHX2), Cl- transporter (OsNRT1, OsCLC, OsCCC1) and gene coding for the transcription factor DREB (OsDREB2) involved in response to desiccation in two cultivars of O. glaberrrima differing in salt-resistance (salt-tolerant cultivar (TOG5307) and salt-sensitive (TOG 5949)) exposed to NaCl, PEG or both agents present simultaneously. Seedlings were grown in iso-osmotic nutrient solution (Ψs = -0.47±0.02 MPa) containing PEG 6,000 12.9% (water stress), NaCl 75 mM (salt stress) and PEG 6.4% + NaCl 37.5 mM (MIX-treatment) during 1 and 7 days. Plants were analyzed for gene expression, mineral nutrients, and photosynthetic-related parameters. Na+ and Cl- accumulations in salt-treated plants were lower in roots and shoots of TOG5307 comparatively to TOG5949 while water content decreased in TOG5307. TOG5307 exhibited tolerance to water stress and maintained higher net photosynthesis and water use efficiency than TOG5949 in response to all treatments, but was less efficient for osmotic adjustment. Dehydration tolerance of TOG5307 involves a higher OsDREB2 expression. TOG5307 also exhibited a higher OsSOS1, OsSOS2, OsNHX1 and OsNHX2 expression than TOG5949 in response to salinity. OsHKT1.5 was slightly induced in the shoot. OsHKT1.1 was recorded in the shoots but remained undetectable in the roots. Chloride and sodium accumulations were strongly reduced in the shoots when PEG was present. Salinity resistance in Oryza glaberrima implies tolerance to dehydration as well as complementary strategies of Na+ exclusion through the SOS system and Na+ tolerance through vacuolar sequestration.


Assuntos
Oryza , Oryza/metabolismo , Desidratação/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fotossíntese , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Salinidade , Estresse Fisiológico/genética
9.
Molecules ; 28(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005297

RESUMO

Gentiopicrin, the main component of the famous Chinese patent medicine Long Dan Xie Gan Wan, has the characteristics of fast absorption in vivo and low bioavailability. Intestinal bacteria play an important role in the absorption and pharmacokinetics of oral drugs. In this study, the metabolic transformation of gentiopicrin by intestinal bacteria was examined. High-performance liquid chromatography coupled with ion trap time-of-flight mass spectrometry (LC/MSn-IT-TOF) and nuclear magnetic resonance (NMR) were used, and six metabolites were identified, including reduction products (G-M1, G-M2, G-M4, and G-M6), a hydrolytic product (G-M3), and a dehydration product (G-M5) of gentiopicrin aglycone after hydrolysis, reduction, and dehydration reactions were performed by the intestinal flora. This is the first time that chiral metabolites of gentiopicrin (G-M1 and G-M2) were found in this study. In addition, the precursors of glucuronic acid conjugates previously reported in vivo may have come from the intestinal bacterial metabolites G-M1, G-M2, and G-M3. In addition, the metabolic transformation of gentiopicrin in liver microsomes was studied in vitro, and it was found that gentiopicrin did not undergo metabolic transformation under the action of liver microsomes. It is suggested that gentiopicroside may be metabolized in the intestine. This study provides both new insight regarding the investigation of effective substances and an exploration of the pharmacodynamic and toxicological properties of gentiopicrin.


Assuntos
Desidratação , Fígado , Humanos , Desidratação/metabolismo , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Microssomos Hepáticos/metabolismo , Bactérias/metabolismo
10.
J Exp Biol ; 226(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921453

RESUMO

Desert organisms have evolved physiological, biochemical and genomic mechanisms to survive the extreme aridity of desert environments. Studying desert-adapted species provides a unique opportunity to investigate the survival strategies employed by organisms in some of the harshest habitats on Earth. Two of the primary challenges faced in desert environments are maintaining water balance and thermoregulation. We collected data in a simulated desert environment and a captive colony of cactus mice (Peromyscus eremicus) and used lab-based experiments with real time physiological measurements; energy expenditure, water loss rate and respiratory exchange rate, to characterize the response to water deprivation. Mice without access to water had significantly lower energy expenditures and in turn, reduced water loss compared to mice with access to water after the first 24 h of the experiment. Additionally, we observed significant mass loss that is probably due to dehydration-associated anorexia a response to limit fluid loss by reducing waste and the solute load as well as allowing water reabsorption from the kidneys and gastrointestinal tract. Finally, we observed body temperature correlated with sex, with males without access to water maintaining body temperature when compared with hydrated males, whereas body temperature decreased for females without access to water, suggesting daily metabolic depression in females.


Assuntos
Desidratação , Peromyscus , Masculino , Animais , Feminino , Desidratação/veterinária , Desidratação/metabolismo , Clima Desértico , Água Corporal , Água
11.
Braz J Biol ; 83: e276264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937632

RESUMO

The water deficit in particular, reduces the productivity of vegetable crops. To minimize these harmful effects on agriculture, several agronomic and physiological practices are being studied, such as the use of bacteria and water stress attenuators, such as brassinosteroids. Considering the socioeconomic relevance of corn culture and its sensitivity when exposed to water deficit, the objective of the present study was to evaluate the action of brassinosteroids and azospirillum on nitrogen metabolism in corn plants subjected to water stress conditions. The experiment was carried out in a greenhouse, in a period of 47 days, with corn plants, using the hybrid K9606 VIP3. The design was completely randomized, in a 2x2x3 factorial scheme, with six replications. The first factor corresponds to two water regimes (presence and absence of water deficit). The second corresponds to inoculation via seed of Azospirillum brasiliense and absence of inoculation. And the third corresponds to the application of three concentrations of brassinosteroids (0, 0.3 and 0.6 µM). Were determined Nitrate; nitrate reductase; free ammonium; total soluble aminoacids; soluble proteins; proline; glycine betaine and glutamine synthetase. The lack of water in plants provided a reduction in the protein and nitrate reductase contents, in leaves and roots. For ammonium, plants with water deficit inoculated at a concentration of 0.3 µM, obtained an increase of 7.16 (70.26%) and 13.89 (77.04%) mmol NH4 + .Kg-1. DM (Dry mass) on the leaf and root respectively. The water deficit in the soil provided significant increases in the concentrations of glycine betaine, nitrate, proline and aminoacids, both in the leaves and in the roots of the corn plants. On the other hand, the contents of glutamine synthetase had a reduction in both leaves and roots.


Assuntos
Compostos de Amônio , Azospirillum brasilense , Zea mays , Brassinosteroides/metabolismo , Nitratos , Raízes de Plantas/metabolismo , Secas , Desidratação/metabolismo , Betaína/metabolismo , Glutamato-Amônia Ligase , Aminoácidos/metabolismo , Prolina/metabolismo , Nitrato Redutases/metabolismo , Nitrogênio/metabolismo
12.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895029

RESUMO

Proteases such as neutrophil elastase cleave and activate the epithelial sodium channel (ENaC), causing airway dehydration. Our current study explores the impact of increased protease levels in vapers' airways on ENaC activity and airway dehydration. Human bronchial epithelial cultures (HBECs) were exposed to bronchoalveolar lavage fluid (BALF) from non-smokers, smokers and vapers. Airway surface liquid (ASL) height was measured by confocal microscopy as a marker of hydration. ENaC cleavage was measured by Western blotting. Human peripheral blood neutrophils were treated with a menthol-flavored e-liquid (Juul), and the resulting secretions were added to HBECs. BALF from smokers and vapers significantly and equally increased ENaC activity and decreased ASL height. The ASL height decrease was attenuated by protease inhibitors. Non-smokers' BALF had no effect on ENaC or ASL height. BALF from smokers and vapers, but not non-smokers, induced ENaC cleavage. E-liquid-treated neutrophil secretions cleaved ENaC and decreased ASL height. Our study demonstrated that elevated protease levels in vapers' airways have functional significance since they can activate ENaC, resulting in airway dehydration. Lung dehydration contributes to diseases like cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD) and asthma. Thus, our data predict that vaping, like smoking, will cause airway surface dehydration that likely leads to lung disease.


Assuntos
Vaping , Humanos , Vaping/efeitos adversos , Proteólise , Desidratação/metabolismo , Mucosa Respiratória/metabolismo , Pulmão/metabolismo , Canais Epiteliais de Sódio/metabolismo
13.
Sci Rep ; 13(1): 18119, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872220

RESUMO

CINAC-patients present renal proximal tubular cell lysosomal lesions which are also observed in patients experiencing calcineurin inhibitor (CNI) nephrotoxicity, suggesting that CINAC is a toxin-induced nephropathy. An alternative hypothesis advocates chronic dehydration as a major etiological factor for CINAC. Here, we evaluated histological and molecular changes in dehydrated versus toxin exposed rats. Wistar rats were divided in 3 groups. Group 1 (n = 6) had free access to drinking water (control group). Group 2 (n = 8) was water deprived for 10 h per 24 h, 5 days/week and placed in an incubator (37 °C) for 30 min/h during water deprivation. Group 3 (n = 8) underwent daily oral gavage with cyclosporine (40 mg/kg body weight). After 28 days, renal function, histopathology and proteomic signatures were analysed. Cyclosporine-treated rats developed focal regions of atrophic proximal tubules with associated tubulo-interstitial fibrosis. PASM staining revealed enlarged argyrophilic granules in affected proximal tubules, identified as lysosomes by immunofluorescent staining. Electron microscopy confirmed the enlarged and dysmorphic phenotype of the lysosomes. Overall, these kidney lesions resemble those that have been previously documented in farmers with CINAC. Dehydration resulted in none of the above histopathological features. Proteomic analysis revealed that dehydration and cyclosporine both induce injury pathways, yet of a clear distinct nature with a signature of toxicity only for the cyclosporine group. In conclusion, both cyclosporine and dehydration are injurious to the kidney. However, dehydration alone does not result in kidney histopathology as observed in CINAC patients, whereas cyclosporine administration does. The histopathological analogy between CINAC and calcineurin inhibitor nephrotoxicity in rats and humans supports the involvement of an as-yet-unidentified environmental toxin in CINAC etiology.


Assuntos
Nefrite Intersticial , Insuficiência Renal , Humanos , Ratos , Animais , Desidratação/metabolismo , Inibidores de Calcineurina , Proteômica , Ratos Wistar , Nefrite Intersticial/patologia , Rim/metabolismo , Ciclosporina/farmacologia , Insuficiência Renal/patologia , Imunossupressores/farmacologia
14.
Cell Rep ; 42(10): 113208, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792531

RESUMO

Clathrin-mediated vesicular formation and trafficking are responsible for molecular cargo transport and signal transduction among organelles. Our previous study shows that CHLOROPLAST VESICULATION (CV)-containing vesicles (CVVs) are generated from chloroplasts for chloroplast degradation under abiotic stress. Here, we show that CV interacts with the clathrin heavy chain (CHC) and induces vesicle budding toward the cytosol from the chloroplast inner envelope membrane. In the defective mutants of CHC2 and the dynamin-encoding DRP1A, CVV budding and releasing from chloroplast are impeded. The mutations of CHC2 inhibit CV-induced chloroplast degradation and hypersensitivity to water stress. Moreover, CV-CHC2 interaction is impaired by the oxidized GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPC). GAPC1 overexpression suppresses CV-mediated chloroplast degradation and hypersensitivity to water stress, while CV silencing alleviates the hypersensitivity of the gapc1gapc2 plant to water stress. Together, our work identifies a pathway of clathrin-assisted CVV budding outward from chloroplast, which is involved in chloroplast degradation and stress response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Desidratação/metabolismo , Cloroplastos/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia
15.
World J Microbiol Biotechnol ; 39(12): 336, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37814195

RESUMO

Azospirillum alphaproteobacteria, which live in the rhizosphere of many crops, are used widely as biofertilizers. Two-component signal transduction systems (TCSs) mediate the bacterial perception of signals and the corresponding adjustment of behavior facilitating the adaptation of bacteria to their habitats. In this study, we obtained the A. baldaniorum Sp245 mutant for the AZOBR_150176 gene, which encodes the TCS of the hybrid histidine kinase/response sensory regulator (HSHK-RR). Inactivation of this gene affected bacterial morphology and motility. In mutant Sp245-HSHKΔRR-Km, the cells were still able to synthesize a functioning polar flagellum (Fla), were shorter than those of strain Sp245, and were impaired in aerotaxis, elaboration of inducible lateral flagella (Laf), and motility in semiliquid media. The mutant showed decreased transcription of the genes encoding the proteins of the secretion apparatus, which ensures the assembly of Laf, Laf flagellin, and the repressor protein of translation of the Laf flagellin's mRNA. The study examined the effects of polyethylene glycol 6000 (PEG 6000), an agent used to simulate osmotic stress and drought conditions. Under osmotic stress, the mutant was no longer able to use collective motility in semiliquid media but formed more biofilm biomass than did strain Sp245. Introduction into mutant cells of the AZOBR_150176 gene as part of an expression vector led to recovery of the lost traits, including those mediating bacterial motility under mechanical stress induced by increased medium density. The results suggest that the HSHK-RR under study modulates the response of A. baldaniorum Sp245 to mechanical and osmotic/water stress.


Assuntos
Azospirillum brasilense , Humanos , Histidina Quinase/genética , Histidina Quinase/metabolismo , Azospirillum brasilense/metabolismo , Flagelina , Desidratação/metabolismo , Flagelos/genética , Flagelos/metabolismo
16.
New Phytol ; 240(6): 2239-2252, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37814525

RESUMO

The high productive potential, heat resilience, and greater water use efficiency of C4 over C3 plants attract considerable interest in the face of global warming and increasing population, but C4 plants are often sensitive to dehydration, questioning the feasibility of their wider adoption. To resolve the primary effect of dehydration from slower from secondary leaf responses originating within leaves to combat stress, we conducted an innovative dehydration experiment. Four crops grown in hydroponics were forced to a rapid yet controlled decrease in leaf water potential by progressively raising roots of out of the solution while measuring leaf gas exchange. We show that, under rapid dehydration, assimilation decreased more steeply in C4 maize and sorghum than in C3 wheat and sunflower. This reduction was due to a rise of nonstomatal limitation at triple the rate in maize and sorghum than in wheat and sunflower. Rapid reductions in assimilation were previously measured in numerous C4 species across both laboratory and natural conditions. Hence, we deduce that high sensitivity to rapid dehydration might stem from the disturbance of an intrinsic aspect of C4 bicellular photosynthesis. We posit that an obstruction to metabolite transport between mesophyll and bundle sheath cells could be the cause.


Assuntos
Helianthus , Sorghum , Zea mays/metabolismo , Triticum/metabolismo , Sorghum/metabolismo , Helianthus/metabolismo , Desidratação/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Água/metabolismo , Produtos Agrícolas/metabolismo , Grão Comestível/metabolismo , Dióxido de Carbono/metabolismo
17.
Am J Physiol Renal Physiol ; 325(6): F717-F732, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37767569

RESUMO

Daily, we may experience mild dehydration with a rise in plasma osmolality that triggers the release of vasopressin. Although the effect of dehydration is well characterized in collecting duct principal cells (CDPCs), we hypothesized that mild dehydration (<12 h) results in many kidney cell-specific changes in transcriptomes and chromatin accessibility. Single-nucleus (sn) multiome (RNA-assay for transposase-accessible chromatin) sequencing and bulk RNA sequencing of kidneys from male and female mice that were mildly water deprived or not were compared. Water-deprived mice had a significant increase in plasma osmolality. sn-multiome-seq resulted in 19,837 nuclei that were annotated into 33 clusters. In CDPCs, aquaporin 2 (Aqp2) and aquaporin 3 (Apq3) were greater in dehydrated mice, but there were novel genes like gremlin 2 (Grem2; a cytokine) that were increased compared with ad libitum mice. The transcription factor cAMP-responsive element modulator (Crem) was greater in CDPCs of dehydrated mice, and the Crem DNA motif was more accessible. There were hundreds of sex- and dehydration-specific differentially expressed genes (DEGs) throughout the kidney, especially in the proximal tubules and thin limbs. In male mice, DEGs were enriched in pathways related to lipid metabolism, whereas female DEGs were enriched in organic acid metabolism. Many highly expressed genes had a positive correlation with increased chromatin accessibility, and mild dehydration exerted many transcriptional changes that we detected at the chromatin level. Even with a rise in plasma osmolality, male and female kidneys have distinct transcriptomes suggesting that there may be diverse mechanisms used to remain in fluid balance.NEW & NOTEWORTHY The kidney consists of >30 cell types that work collectively to maintain fluid-electrolyte balance. Kidney single-nucleus transcriptomes and chromatin accessibility profiles from male and female control (ad libitum water and food) or mildly dehydrated mice (ad libitum food, water deprivation) were determined. Mild dehydration caused hundreds of cell- and sex-specific transcriptomic changes, even though the kidney function to conserve water was the same.


Assuntos
Desidratação , Transcriptoma , Camundongos , Animais , Masculino , Feminino , Desidratação/metabolismo , Cromatina/genética , Cromatina/metabolismo , Aquaporina 2/genética , Aquaporina 2/metabolismo , Rim/metabolismo , Água/metabolismo
18.
Environ Sci Pollut Res Int ; 30(38): 88986-88997, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37450188

RESUMO

Modeling plants for biomass production and metal uptake from surrounding environment is strongly dependent on the moisture content of soil. Therefore, experiments were conducted to find out how soil moisture affects the phenotypic traits, photosynthetic efficiency, metabolic profile, and metal accumulation in the hyperaccumulating ecotype of Sedum alfredii (S. alfredii). A total of six water potential gradients were set: 0 ~ -15 kPa (T1), -15 ~ -30 kPa (T2), -30 ~ -45 kPa (T3), -45 ~ -60 kPa (T4), -60 ~ -75 kPa (T5), and -75 ~ -90 kPa (T6). Different water potential treatments had a significant effect on plant growth and metal uptake efficiency. Compared to T3, T2 was more effective in promoting plant growth and development, with an increase in biomass of 23% and 17% in both fresh weight (FW) and dry weight (DW), respectively. T2 and T3 had the highest cadmium (Cd) content in the shoot (280.2 mg/kg) and (283.3 mg/kg), respectively, whereas T1 had the lowest values (204.7 mg/kg). Cd availability for plants in the soil was affected by moving soil moisture cycles. Changes in soil moisture that were either too high or too low compared to the ideal soil water content for S. alfredii growth resulted in a significant reduction in Cd accumulation in shoots. Tryptophan, phenylalanine, and other amino acids were accumulated in T5, whereas only tryptophan and phenylalanine slightly increased in T1. Sugars and alcohols such as sucrose, trehalose, mannitol, galactinol, and mannobiose increased in T5, while they decreased significantly in T1. Interestingly, in contrast to T1, the two impaired metabolic pathways in T5 (galactose and starch metabolism) were identified to be glucose metabolic pathways. These findings provide scientific information (based on experiments) to improve biomass production and metal uptake efficiency in hyperaccumulating ecotype of S. alfredii for phytoremediation-contaminated agricultural fields.


Assuntos
Sedum , Poluentes do Solo , Cádmio/análise , Sedum/metabolismo , Ecótipo , Solo/química , Desidratação/metabolismo , Triptofano , Poluentes do Solo/análise , Raízes de Plantas/metabolismo , Fotossíntese , Biodegradação Ambiental
19.
Sci Rep ; 13(1): 9907, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336951

RESUMO

Recurring heat and drought episodes present challenges to the sustainability of grape production worldwide. We investigated the impacts of heat and drought stress on transcriptomic and metabolic responses of berries from two wine grape varieties. Cabernet Sauvignon and Riesling grapevines were subjected to one of four treatments during early fruit ripening: (1) drought stress only, (2) heat stress only, (3) simultaneous drought and heat stress, (4) no drought or heat stress (control). Berry metabolites, especially organic acids, were analyzed, and time-course transcriptome analysis was performed on samples before, during, and after the stress episode. Both alone and in conjunction with water stress, heat stress had a much more significant impact on berry organic acid content, pH, and titratable acidity than water stress. This observation contrasts with previous reports for leaves, which responded more strongly to water stress, indicating that grape berries display a distinct, organ-specific response to environmental stresses. Consistent with the metabolic changes, the global transcriptomic analysis revealed that heat stress had a more significant impact on gene expression in grape berries than water stress in both varieties. The differentially expressed genes were those associated with the tricarboxylic acid cycle and glyoxylate cycle, mitochondrial electron transport and alternative respiration, glycolysis and gluconeogenesis, carbohydrate allocation, ascorbate metabolism, and abiotic stress signaling pathways. Knowledge regarding how environmental stresses, alone and in combination, impact the berry metabolism of different grape varieties will form the basis for developing recommendations for climate change mitigation strategies and genetic improvement.


Assuntos
Transcriptoma , Vitis , Vitis/metabolismo , Frutas/genética , Frutas/metabolismo , Desidratação/metabolismo , Resposta ao Choque Térmico/genética
20.
Int J Mol Sci ; 24(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37298675

RESUMO

Drought is among the most challenging environmental restrictions to tomatoes (Solanum lycopersi-cum), which causes dehydration of the tissues and results in massive loss of yield. Breeding for dehydration-tolerant tomatoes is a pressing issue as a result of global climate change that leads to increased duration and frequency of droughts. However, the key genes involved in dehydration response and tolerance in tomato are not widely known, and genes that can be targeted for dehydration-tolerant tomato breeding remains to be discovered. Here, we compared phenotypes and transcriptomic profiles of tomato leaves between control and dehydration conditions. We show that dehydration decreased the relative water content of tomato leaves after 2 h of dehydration treatment; however, it promoted the malondialdehyde (MDA) content and ion leakage ratio after 4 h and 12 h of dehydration, respectively. Moreover, dehydration stress triggered oxidative stress as we detected significant increases in H2O2 and O2- levels. Simultaneously, dehydration enhanced the activities of antioxidant enzymes including peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and phenylalanine ammonia-lyase (PAL). Genome-wide RNA sequencing of tomato leaves treated with or without dehydration (control) identified 8116 and 5670 differentially expressed genes (DEGs) after 2 h and 4 h of dehydration, respectively. These DEGs included genes involved in translation, photosynthesis, stress response, and cytoplasmic translation. We then focused specifically on DEGs annotated as transcription factors (TFs). RNA-seq analysis identified 742 TFs as DEGs by comparing samples dehydrated for 2 h with 0 h control, while among all the DEGs detected after 4 h of dehydration, only 499 of them were TFs. Furthermore, we performed real-time quantitative PCR analyses and validated expression patterns of 31 differentially expressed TFs of NAC, AP2/ERF, MYB, bHLH, bZIP, WRKY, and HB families. In addition, the transcriptomic data revealed that expression levels of six drought-responsive marker genes were upregulated by de-hydration treatment. Collectively, our findings not only provide a solid foundation for further functional characterization of dehydration-responsive TFs in tomatoes but may also benefit the improvement of dehydration/drought tolerance in tomatoes in the future.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Solanum lycopersicum/genética , Desidratação/genética , Desidratação/metabolismo , Peróxido de Hidrogênio/metabolismo , Perfilação da Expressão Gênica , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Secas , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...